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Abstract: Bagger-Lambert-Gustavsson theory with infinite dimensional gauge group has

been suggested to describe M5-brane as a condensation of multiple M2-branes. Here we

perform a topological twisting of the Bagger-Lambert-Gustavsson theory. The original

SO(8) R-symmetry is broken to SO(3) × SO(5), where the former may be interpreted as

a diagonal subgroup of the Euclidean M5-brane world-volume symmetry SO(6), while the

latter is the isometry of the transverse five directions. Accordingly the resulting action

contains an one-form and five scalars as for the bosonic dynamical fields. We further

lift the action to a generic curved three manifold. In order to make sure the genuine

topological invariance, we construct an off-shell supersymmetric formalism such that the

scalar supersymmetry transformations are nilpotent strictly off-shell and independent of the

metric of the three manifold. The one loop partition function around a trivial background

yields the Ray-Singer torsion. The BPS equation involves an M2-brane charge density

given by a Nambu-Goto action defined in an internal three-manifold.

Keywords: Brane Dynamics in Gauge Theories, Topological Field Theories, M-Theory.

c© SISSA 2008

mailto:lkh@phya.yonsei.ac.kr
mailto:sangmin@snu.ac.kr
mailto:park@sogang.ac.kr
http://jhep.sissa.it/stdsearch


J
H
E
P
1
1
(
2
0
0
8
)
0
1
4

Contents

1. Introduction 1

2. Twisted Bagger-Lambert-Gustavsson theory 3

2.1 Euclidean Bagger-Lambert-Gustavsson theory 3

2.2 Description of the twist 5

2.3 Twisted Lagrangian 6

2.4 On-shell scalar supersymmetry and BPS equations 7

3. Off-shell supersymmetric formulation of the twist 8

3.1 Off-shell supersymmetry algebra 9

3.2 Off-shell supersymmetric Lagrangian 10

4. Observables and partition function 12

4.1 Observables 12

4.2 Partition function 13

5. Relation to M5: partial topological twist of six-dimensional theory 15

6. Outlook 17

A. Some useful relations 17

1. Introduction

D-branes have played a crucial role in understanding non-perturbative dynamics of string

theory. The M2 and M5 branes are expected to play a similar role in M-theory, but due

to their intrinsically non-perturbative nature, their world-volume theories remain much

less understood than those of D-branes. In particular, a Lorentz invariant Lagrangian

descriptions of the interacting conformal field theories living in the M2/M5 world-volume

have been missing.

Being the only branes in M-theory (in flat eleven-dimensions), M2 and M5 branes

are intricately related. First, they are electromagnetic dual to each other with respect to

the four-form field strength G(4) = dC(3) in the eleven-dimensional supergravity. Second,

M2-branes can end on M5-branes just as fundamental strings end on D-branes. Roughly

speaking, quantum excitations of open M2-branes should give rise to a microscopic formu-

lation of the M5-brane world-volume theory. Third, the self-dual three-form flux H(3) on

M5-branes carries M2-brane charge. Finally, M2-branes in a background G(7) = ∗G(4) can

be blown up to M5-branes by an M-theory version of the Myers’ effect [1].
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Some time ago, Basu and Harvey [2] studied the BPS configuration of M2-branes

ending on M5-branes, which exhibits many of these relations at once.1 In analogy with the

D1-D3 interpretation of Nahm’s equations [3, 4], they argued that the “non-Abelian” M2-

brane world-volume theory should admit a sort of fuzzy three-sphere solution [5]. Around

the same time, from a different perspective, Schwarz [6] raised the possibility of using

superconformal Chern-Simons theories as for the description of the M2-brane dynamics.

Inspired by these pioneering works, Bagger-Lambert [7] and Gustavsson [8] (BLG)

succeeded in writing down an N = 8 superconformal Chern-Simons-matter theory with

SO(8) R-symmetry. The BLG Lagrangian was interpreted as the low energy of limit of the

world-volume theory of two M2-branes in a certain M-theory background [9, 10].

The action is based on a gauge symmetry generated by the so-called three-algebra.

As for a conventional, ghost-free field theory with a finite number of fields, the BLG

theory admits only one gauge group SO(4) ≃ SU(2) × SU(2) with opposite levels for

the two Chern-Simons terms, and matter fields come in bi-fundamental representations.

The uniqueness is due to the surprisingly strong constraint imposed by the three-algebra

structure. In order to free this severe restriction, one can consider either Lorentzian gauge

groups [11] or infinite dimensional three-algebras. The latter can be realized as a volume-

preserving diffeomorphism of an auxiliary three-dimensional manifold. Combining both the

original and the auxiliary three manifolds leads to a six-dimensional manifold, and the BLG

theory with an infinite-dimensional gauge group may have a natural origin as an M5-brane

action [12 – 14]. In particular, in ref. [13] it has been shown that by generalizing the Brink-Di

Vecchia-Howe-Polyakov method, Nambu-Goto action for a p-brane can be reformulated as

a d-dimensional gauged nonlinear sigma model having a Nambu (p+1−d)-bracket squared

potential. While the choice d = p − 1 leads to the Yang-Mills potential, the choice d =

p− 2 leads to the Nambu three-bracket potential, and hence an infinite dimensional three-

algebra. In particular, an M5-brane may be described by a condensation of M2-branes.

The connection between multiple M2’s and an M5 motivates us to twist the (Euclidean)

BLG theory by diagonalizing the SO(3) Lorentz symmetry and an SO(3) subgroup of the

SO(8) R-symmetry. The resulting action will contain five scalars which can be viewed as

the physical degrees of freedom along the five transverse directions of an M5-brane. While

the twisting we perform works for any three-algebra, as an application, we will consider

infinite dimensional gauge group or volume-preserving diffeomorphism in an internal three

manifold at the end of the paper.

A quantum field theory is called topological if all vacuum expectation values (vevs) of

a certain set of operators (observables) are metric-independent. In particular, topological

quantum field theories (TQFTs) of cohomological type are constructed as follows. Let us

assume there is a nilpotent symmetry of the action Q, such that Q2 = 0. It follows that, at

least formally, one can deform the Lagrangian by adding an arbitrary Q-exact term without

affecting the partition function or the vevs of observables (which are defined as elements

in the cohomology of Q). Since Q is a symmetry of the action, the Lagrangian can be

expressed as a sum of a Q-exact and a Q-closed piece. The theory is therefore independent

1See ref. [15] for further discussion.
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of any coupling constant in the Q-exact piece. Moreover, if the energy momentum tensor

is Q-exact all vevs of observables are metric-independent and the theory is topological.

The organization of the present paper is as follows.

In section 2, we construct the twisted BLG theory. We begin with writing down

the Euclidean version of the BLG theory. Then, we perform a twist which preserves an

SO(3) × SO(5) ⊂ SO(8) R-symmetry. On-shell nilpotency of the scalar supersymmetries

and the corresponding BPS equations are also presented.

In section 3, to make sure the genuine topological invariance, we introduce some auxil-

iary fields such that the supersymmetry algebra closes strictly off-shell and the supersym-

metry transformations are independent of the three-manifold metric. Using the off-shell

supersymmetric formulation, we separate the twisted BLG action into a Q-closed topolog-

ical part and a Q-exact part, thereby verifying the topological invariance of the theory.

In section 4, we initiate the study of observables of the theory. We explicitly derive

those observables which can be obtained from the Lagrangian through a descent relation.

Then, we explore the possibility of a Wilson-loop operator, but our analysis indicates that

the twisted BLG theory does not admit a Q-closed Wilson loop operator. Then we take

a first step toward the perturbative computation of the partition function. The one loop

determinants around a trivial background turns out to be the Ray-Singer torsion.

In section 5, we interpret our results from the M5-brane point of view. Realizing

infinite dimensional gauge symmetry as volume preserving diffeomorphism in an internal

three manifold, our twisted theory can be viewed as partial topological twisting of a six-

dimensional theory, where the six-dimensional space has the fiber bundle structure: at

each point in a three manifold (base), there exists a corresponding internal three manifold

(fiber). The BPS equations then involves an M2-brane charge density given by a Nambu-

Goto action defined in an internal three-manifold.

In section 6, we conclude with some comments on future work.

Appendix carries some relevant useful identities.

2. Twisted Bagger-Lambert-Gustavsson theory

2.1 Euclidean Bagger-Lambert-Gustavsson theory

To start, we present the Euclidean version of the Bagger-Lambert-Gustavsson Lagrangian:

LEuclidean = iǫµνλ

(

1

2
fabcdAµab∂νAλcd −

1

3
f cdagf efb

gAµabAνcdAλef

)

+Tr

[

1

2
(DµX

I)2− i

2
Ψ̄ΓµDµΨ+

i

4
Ψ̄ΓIJ [XI ,XJ ,Ψ]+

1

12
[XI ,XJ ,XK ]2

]

. (2.1)

There are some common as well as distinct features compared to the original Minkowskian

case [7]. In terms of an explicit basis of the three-algebra,

[T a, T b, T c] = fabc
dT

d , (2.2)

the dynamical variables take values in the three-algebra, e.g. XI = XI
aT

a. The trace is

always taken over second-order in three-algebra variables such that, in fact it involves a
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metric which can raise or low the gauge index. The covariant derivatives are the same as

in the Minkowskian case [7]:

DµX
I
a = ∂µX

I
a + Ãµa

bXI
b , DµX

aI = ∂µX
aI −XbI Ãµb

a = ∂µX
aI + Ãµ

a
bX

bI . (2.3)

The tilde symbol denotes the contraction with the structure constant of the three-algebra,

Ãµa
b := Aµcdf

cd
a
b . (2.4)

The gauge symmetry is then realized by

δΛX
I
a = −Λ̃a

bXI
b , δΛΨa = −Λ̃a

bΨb , δΛAµab = DµΛab = ∂µΛab + Ãµa
cΛcb + Ãµb

cΛac .

(2.5)

The key difference, compared to the Minkowskian signature [7], is that the Euclidean action

contains only the ‘holomorphic’ part of the spinor such that Ψ̄ is defined to be the charge

conjugation of Ψ:

Ψ̄ := ΨTC . (2.6)

This is due to the fact that the three-dimensional Euclidean space does not admit real

spinors i.e. Majorana condition. Here C is the charge conjugation matrix in eleven dimen-

sions satisfying

CΓMC−1 = −(ΓM )T , CT = −C , (2.7)

where M is the eleven-dimensional vector index which decomposes into µ = 1, 2, 3 and

I = 4, 5, . . . , 11. Throughout the paper, the complex conjugation of spinors will never

appear as we focus on the Euclidean space. Further the dynamical spinor field Ψ has a

definite chirality over (1, 2, 3)-space:

Γ123Ψ = +iΨ . (2.8)

In our convention, the field strength is defined by

F̃µν
a
b = ∂µÃν

a
b − ∂νÃµ

a
b + Ãµ

a
cÃν

c
b − Ãν

a
cÃµ

c
b , (2.9)

of which the overall sign is opposite to the original convention by Bagger and Lambert [7]

but faithful to the standard convention.

Last but not least, the Euclidean action (2.1) is invariant under the following sixteen

supersymmetry transformation:2

δXI
a = iĒΓIΨa ,

δΨa = DµX
I
aΓµΓIE − 1

6
XI

bX
J
c X

K
d f

bcd
aΓ

IJKE , (2.10)

δÃµab = iĒΓµΓIX
I
c Ψdf

cd
ab ,

which take exactly the same form as in the Minkowskian case. The supersymmetry pa-

rameter E possesses the opposite chirality compared to (2.8),

Γ123E = −iE . (2.11)

2In addition to the ordinary supersymmetry (2.11), the Euclidean action enjoys sixteen conformal su-

persymmetry [20], which can be also twisted to define a novel topological theory on an arbitrary three-

dimensional cone, as was done for N = 4 super Yang-Mills defined on a four-dimensional cone [21].
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2.2 Description of the twist

We now come to the description of the twist we perform. Under Spin(11) → Spin(3) ×
Spin(3) × Spin(5), the eleven-dimensional gamma matrices can be decomposed as

Γµ = σµ ⊗ 1 ⊗ 1 ⊗ σ3 , Γµ+3 = 1 ⊗ σµ ⊗ 1 ⊗ σ1 , Γi+6 = 1 ⊗ 1 ⊗ γi ⊗ σ2 , (2.12)

where σµ, µ = 1, 2, 3 are 2 × 2 Pauli matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
+i 0

)

, σ3 =

(

+1 0

0 −1

)

, (2.13)

and γi, i = 1, 2, . . . , 5 are 4 × 4 gamma matrices in Euclidean five dimensions, satisfying

γiγj + γjγi = 2δij , γ12345 = 1 . (2.14)

The charge conjugation matrix in (2.7) takes the explicit form:

C = ǫ⊗ ǫ⊗ C ⊗ 1 , (2.15)

where ǫ = iσ2 as usual, and C is the five-dimensional charge conjugation matrix,

ǫσµǫ−1 = −(σµ)T , CγiC−1 = +(γi)T , CT = −C . (2.16)

The so(8) chiral matrix is then

Γ123 = −iΓ456···11 = 1 ⊗ 1 ⊗ 1 ⊗ iσ3 . (2.17)

Consequently the eleven-dimensional spinors carry four indices Ψα̇β̇α±. The first two α̇,

β̇ indices are for the so(3) spinor indices and the third one α is for so(5) spinor indices

running from one to four. The last one ± denotes the so(8) chirality. Since the dynamical

spinor carries the definite chirality (2.8) we have Ψα̇β̇α−= 0. Similarly from (2.11), we

have for the supersymmetry parameter E α̇β̇α+= 0. The twist we focus on in the present

paper amounts to replacing the three-dimensional rotation group by the diagonal subgroup

of Spin(3) × Spin(3). Accordingly, the twisted spinors admit the following expansion:

Ψα̇β̇α+ =
1√
2

(

iηαǫα̇β̇ + χα
µ(σµǫ)α̇β̇

)

, E α̇β̇α− =
1√
2

(

iεαǫα̇β̇ + εαµ(σµǫ)α̇β̇
)

. (2.18)

Namely the fermions decompose into a SO(3) scalar η, ε and a one-form χµdxµ, εµdxµ. In

analogue to (2.6), we also define the charge conjugation of the SO(5) spinors for conve-

nience:

η̄ = ηTC , χ̄µ = χT
µC . (2.19)

Finally for bosons, our twist prescribes to decompose the eight bosonic fields into a SO(3)

one-form and five scalars:

XI −→
(

Xµdxµ , Y i
)

. (2.20)
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2.3 Twisted Lagrangian

Taking the decompositions (2.12), (2.18), (2.20) and an identity (A.3) into account, it is

straightforward to rewrite the Euclidean Bagger-Lambert-Gustavsson action (2.1) in terms

of the anti-commuting fields η, χµ and the bosons Aµ,Xµ, Y
i. The resulting action defines

our twisted Bagger-Lambert-Gustavsson theory in three-dimensions:

Stwisted =

∫

d3x Ltwisted , Ltwisted = Ltop +
√
gLg , (2.21)

where

Ltop = iǫµνλ

(

1

2
A+

µab∂νÃ
+ab
λ +

1

3
A+

µabÃ
+
ν

a
cÃ

+
λ

cb

)

−ǫµνλTr

[

1

2
χ̄µD

+
ν χλ − i

1

2
χ̄µγ

i [χν ,Xλ, Yi]

]

(2.22)

and

Lg = Tr

[

1

4
(DµXν−DνXµ)(DµXν−DνXµ) +

1

2

(

DµX
µ+ i

1

6
√
g
ǫµνλ[Xµ,Xν ,Xλ]

)2

+
1

2
D+

µ Y
iD−µYi +

1

12
[Y i, Y j, Y k][Yi, Yj, Yk] +

1

4
[Xµ, Y

j, Y k][Xµ, Yj, Yk]

+η̄D−
µ χ

µ + iη̄γi [Yi,Xµ, χ
µ] + i

1

4
η̄γij [Yi, Yj , η] + i

1

4
χ̄µγij [Yi, Yj , χµ]

]

. (2.23)

In the above, we have coupled the action to a generic three-dimensional metric gµν ,

such that all the derivatives are covariant with respect to both diffeomorphisms and gauge

transformations, and that ǫλµν is the totally antisymmetric tensor density, satisfying ǫ123 =

1 and ǫ123 = g := det(gµν). It is worthwhile to note that Ltop is manifestly metric-

independent as the Christoffel connection is torsion-free, and that DµX
µ is effectively the

only term in Lg which contains the Christoffel connection after replacing the fermionic term

η̄D−
µ χ

µ by −χ̄µD−
µ η. The introduction of the curved background metric is necessary for

the twisted action to lead to a ‘topological’ theory, in the sense of the metric independence.

Moreover, we have complexified the gauge field:

Ã+
µab := Ãµab − i

1

2
√
g
ǫµνλX

ν
c X

λ
d f

cd
ab , Ã−

µab := Ãµab + i
1

2
√
g
ǫµνλX

ν
c X

λ
d f

cd
ab , (2.24)

such that

D+
µ = Dµ + i

1

2
√
g
ǫµνλ

[

Xν ,Xλ,
]

, D−
µ = Dµ − i

1

2
√
g
ǫµνλ

[

Xν ,Xλ,
]

, (2.25)

and

F̃+
µν

a
b = F̃µν

a
b − i

1√
g
ǫνρσ(DµX

ρ)cX
σ
d f

cda
b + i

1√
g
ǫµρσ(D+

ν X
ρ)cX

σ
d f

cda
b

= F̃µν
a
b − i

1√
g
ǫνρσ(D+

µX
ρ)cX

σ
d f

cda
b + i

1√
g
ǫµρσ(DνX

ρ)cX
σ
d f

cda
b . (2.26)
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It is worth while to note:

DλXµ −DµXλ = D+
λ Xµ −D+

µXλ = D−
λ Xµ −D−

µXλ ,

DµXµ + i
1

6
√
g
ǫµνρ[Xµ,Xν ,Xρ] = D+

µX
µ − i

1

3
√
g
ǫµνλ[Xµ,Xν ,Xλ] . (2.27)

The Euler-Lagrange equations of motion are, for bosons Xµ, Y
i, A+

µ :

Dµ

(

DλXµ −DµXλ
)

+D−λ

(

DµXµ + i
1

6
√
g
ǫµνρ[Xµ,Xν ,Xρ]

)

− i[η̄, γiχλ, Yi]

+i
1√
g
ǫλµν

(

2[η̄,Xµ, χν ] − [D+
µ Y

i, Yi,Xν ] +
1

2
[χ̄µ, γ

iχν , Yi]

)

− 1

2
[Y i, Y j, [Xλ, Yi, Yj ]] = 0 ,

DµD
+µY i − i

1√
g
ǫλµν

(

[DµXν ,Xλ, Yi] −
1

2
[χ̄µ, γ

iχν ,Xλ]

)

+ i[η̄,Xµ, γ
iχµ]

−i1
2
[η̄, γijη, Yj ] − i

1

2
[χ̄µ, γijχµ, Yj] +

1

2

[

Yj, Yk, [Y
j, Y k, Y i]

]

+
[

Xµ, Yj , [X
µ, Y j, Y i]

]

= 0 ,

fabcd

(

1

2
√
g
ǫµνλχ̄νcχλd−Y i

cD
+
µ Yid+i

1

2
√
g
Y i

c ǫ
µνλ[χν ,Xλ, Yi]d−Xνc(D

µXν −DνXµ)d

+ (DλX
λ + i

1

6
√
g
ǫλµν [Xµ,Xν ,Xλ])cX

µ
d + η̄cχ

µ
d

)

+ i
1√
g
ǫµνλF̃+ab

νλ = 0 ,

(2.28)

and for fermions η, χµ :

ζ := D−
µ χ

µ + i[Y i,Xµ, γiχµ] + i
1

2
[Y i, Y j, γijη] = 0 ,

ξµ := D−
µ η + i[Y i,Xµ, γiη] − i

1

2
[Y i, Y j , γijχµ]

+
1√
g
ǫµ

νλD+
ν χλ − i

1√
g
ǫµνλ[Y i,Xν , γiχ

λ] = 0 . (2.29)

2.4 On-shell scalar supersymmetry and BPS equations

In flat background, the twisted Bagger-Lambert-Gustavsson action (2.21) is invariant un-

der the sixteen supersymmetries Qα, Qα
µ as in the untwisted case. However, in curved

backgrounds, in order to have supersymmetry unbroken, it is necessary that the corre-

sponding supersymmetry parameters εα, εαµ should be covariantly constant. Generically,

this requirement can be only met for the scalar parameters εα. Indeed, for our twisted

Bagger-Lambert-Gustavsson theory in a generic curved background, the twelve vectorial

supersymmetries are broken and only the four scalar supersymmetries survive. Explicitly

the unbroken scalar supersymmetries are given by:

δXµ = ε̄χµ ,

δY i = ε̄γiη ,

δη = −
(

DµX
µ + i

1

6
√
g
ǫµνλ[Xµ,Xν ,Xλ]

)

ε+ i
1

6
[Y i, Y j, Y k]γijkε , (2.30)

– 7 –
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δχλ =
1√
g
ǫλµνD

µXνε+D+
λ Y

iγiε+ i
1

2
[Y i, Y j ,Xλ]γijε ,

δÃµab = i

(

−Xµcε̄ηd +
1√
g
ǫµνλX

ν
c ε̄χ

λ
d + Yicε̄γ

iχµd

)

f cd
ab .

Equivalently in terms of scalar supercharges:

[Qα,Xµ] = χα
µ ,

[

Qα, Y i
]

= (γiη)α ,

{Qα, η̄β} = −
(

DµX
µ+i

1

6
√
g
ǫµνλ[Xµ,Xν ,Xλ]

)

δα
β−i

1

6
[Y i, Y j, Y k](γijk)

α
β , (2.31)

{Qα, χ̄λβ} =
1√
g
ǫλ

µνDµXνδ
α

β +D+
λ Y

i(γi)
α

β − i
1

2
[Y i, Y j,Xλ](γij)

α
β ,

[

Qα, Ãµab

]

= i

(

−Xµcη
α
d +

1√
g
ǫµ

νλXνcχ
α
λd + Yic(γ

iχµd)
α

)

f cd
ab .

Successive scalar supersymmetry transformations give
[

{Qα, Qβ},Xµ

]

= i[Y i, Y j,Xµ](γijC
−1)αβ ,

[

{Qα, Qβ}, Y i
]

= i[Y i, Y j, Y i](γijC
−1)αβ ,

[

{Qα, Qβ}, ηγ

]

= i[Y i, Y j, ηγ ](γijC
−1)αβ + δβ

γζ
α + δα

γζ
β , (2.32)

[

{Qα, Qβ}, χµγ

]

= i[Y i, Y j, χµγ ](γijC
−1)αβ − δβ

γξ
α
µ − δα

γξ
β
µ ,

[

{Qα, Qβ}, Ãµab

]

= 2i
(

Y i
cDµY

j
d (γijC

−1)αβ
)

f cd
ab .

Apart from the Euler-Lagrange equations of the fermions, ζ, ξµ (2.29), the right hand

sides in (2.33) correspond precisely to the gauge transformation (2.5). Thus, the scalar

supercharges are nilpotent on-shell up to gauge transformations.

From the supersymmetry transformations of the fermions (2.31), we see that super-

symmetric invariant bosonic configurations must satisfy the following BPS conditions:3

D+
µX

µ − i
1

3
√
g
ǫµνλ[Xµ,Xν ,Xλ] = 0 , D+

µXν −D+
ν Xµ = 0 ,

D+
µ Y

i = 0 , [Y i, Y j , Y k] = 0 , [Y i, Y j,Xλ] = 0 . (2.33)

Further, these BPS conditions imply the bosonic Euler-Lagrange equations of motion (2.28)

if and only if

F+
µν = 0 . (2.34)

3. Off-shell supersymmetric formulation of the twist

The above on-shell formulation of the twist is not yet sufficient to define a genuine topo-

logical field theory which depends only on the topology of the three-dimensional base

3For various BPS states in the original untwisted BLG theory, including the classification, we refer [22 –

24].
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manifold, since the scalar supercharges are only on-shell nilpotent and the scalar super-

symmetry transformations (2.31) are not independent from the base manifold metric. In

this section we construct an off-shell supersymmetric formalism of the twist which will

eventually lead to a genuine topological field theory.

3.1 Off-shell supersymmetry algebra

Our off-shell supersymmetric formulation requires two auxiliary fields which we call h and

hµ. The off-shell Q-variations are defined over {Xµ, Y
i, h, hµ, η, χµ, A

+
µ } as follows:4

[Qα,Xµ] = χα
µ ,

[

Qα, Y i
]

= (γiη)α ,

[Qα, h] = −i1
2
[Y i, Y j, (γijη)

α] ,

[Qα, hµ] = −D+
µ η

α + i[Xµ, Y
i, (γiη)

α] + i
1

2
[Y i, Y j , (γijχµ)α] ,

{Qα, η̄β} = −hδα
β − i

1

6
[Y i, Y j , Y k](γijk)

α
β , (3.1)

{Qα, χ̄µβ} = hµδ
α
β +D+

µ Y
i(γi)

α
β − i

1

2
[Y i, Y j,Xµ](γij)

α
β ,

[

Qα, Ã+
µab

]

= i
(

−Xµcη
α
d + Yic(γ

iχµd)
α
)

f cd
ab .

It is straightforward to verify that our Q-variations (3.1) are nilpotent strictly off-shell, up

to a gauge transformation: for all the fields in {Xµ, Y
i, h, hµ, η, χµ, A

+
µ }, we find

Q2 = gauge transformation , (3.2)

where, with an arbitrary constant c-number spinor vα, Q = v̄αQ
α and the gauge parame-

ter (2.5) is given by

Λab = i
1

2
Y i

aY
j
b (γijC

−1)αβ v̄αv̄β . (3.3)

Here the off-shell supersymmetry algebra is defined for Ã+
µab and not for Ã−

µab. In

our off-shell supersymmetric formalism it is not necessary to define the Qα-variation of

Ã−
µab = (Ã+

µab)
∗. In fact, in our off-shell supersymmetric formulation we may relax the

decomposition rule of the complex gauge field into the real and imaginary parts given in

eq. (2.24), such that Ãµab will never appear and we may keep only the reality condition

Ã−
µab = (Ã+

µab)
∗.5 In this case, the identities (2.27) do not hold anymore.

4Transforming (2.31) to (3.1), we made the identification,

h ≡ D
+µ
Xµ − i

1

3
√
g
ǫ
µνλ[Xµ,Xν ,Xλ] , hµ ≡ 1√

g
ǫµνλD

+ν
X

λ
,

where “≡” means on-shell equivalence. To obtain the Q-variation of the auxiliary fields, we take the

variation of their on-shell values and use the equations of motion to remove any metric-dependent terms.
5Note that [Qα, Ã+

µab]
† does not lead to the Qα-variation of Ã−

µab = (Ã+
µab)

∗, since Qα is not hermitian.
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Ghost number. In topological field theories, it is often useful to introduce the so-called

ghost-number U , though it may not lead to a symmetry of the topological action, as will

be the case with our twisted Lagrangian. We first assign ghost number one to the scalar

supercharges, U(Q) = 1. Then (3.1) uniquely determines the ghost number of each field:

U(Xµ, χµ, hµ, Y, η, h, Ã
+
µ ) = (−1, 0, +1, +1, +2, +3, 0) . (3.4)

3.2 Off-shell supersymmetric Lagrangian

Provided the off-shell supersymmetry algebra, it is straightforward to obtain the off-shell

supersymmetric Lagrangian:

Loff−shell=iǫ
µνλ

(

1

2
A+

µab∂νÃ
+ab
λ +

1

3
A+

µabÃ
+
ν

a
cÃ

+
λ

cb

)

−ǫµνλTr

(

1

2
χ̄µD

+
ν χλ − i

1

2
χ̄µ

[

γiχν ,Xλ, Y
i
]

+ i
1

3
h[Xµ,Xν ,Xλ] − hµD

+
ν Xλ

)

+
√
gTr

(

1

2
D+

µ Y
iD−

µ Yi −
1

2
h2 + hD+µXµ − 1

2
hµhµ

+
1

12
[Y i, Y j , Y k][Yi, Yj , Yk] +

1

4
[Xµ, Y

j , Y k][Xµ, Y j, Y k]

− χ̄µD−
µ η + iη̄γi

[

Y i,Xµ, χ
µ
]

+ i
1

4
η̄γij

[

Y i, Y j , η
]

+ i
1

4
χ̄µγij

[

Y i, Y j , χµ

]

)

. (3.5)

Integrating out the auxiliary fields, the above off-shell supersymmetric Lagrangian (3.5)

reduces to the form:

Loff−shell ≡ iǫµνλ

(

1

2
A+

µab∂νÃ
+ab
λ +

1

3
A+

µabÃ
+
ν

a
cÃ

+
λ

cb

)

−ǫµνλTr

(

1

2
χ̄µD

+
ν χλ − i

1

2
χ̄µ

[

γiχν ,Xλ, Y
i
]

)

+
√
gTr

(

1

2
(D+µXµ − i

1

3
√
g
ǫµνλ[Xµ,Xν ,Xλ])2

+
1

4
(D+

µXν −D+
ν Xµ)(D+µXν −D+νXµ)

+
1

2
D+

µ Y
iD−

µ Yi +
1

12
[Y i, Y j , Y k][Yi, Yj , Yk]

+
1

4
[Xµ, Y

j , Y k][Xµ, Y j, Y k] − χ̄µD−
µ η + iη̄γi

[

Y i,Xµ, χ
µ
]

+ i
1

4
η̄γij

[

Y i, Y j, η
]

+ i
1

4
χ̄µγij

[

Y i, Y j , χµ

]

)

,

which is very similar, but not identical, to the on-shell supersymmetric La-

grangian (2.22), (2.23). Only if we assume the decomposition of the complex gauge field

into the real and imaginary parts given in (2.24), they coincide.

A crucial feature of the off-shell supersymmetric Lagrangian (3.5) is that it can be

written as a sum of Q-closed and Q-exact parts:

Loff−shell = Lclosed + {Q,Σ} , (3.6)
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where, firstly with a pair of arbitrary constant c-number spinors v̄α, u
β satisfying v̄αu

α 6= 0,

the scalar supercharge and and the fermionic scalar in the Q-exact part are

Q = v̄αQ
α , Σ = Σ̄αu

α/(v̄βu
β) , (3.7)

of which the fermionic SO(5) spinor is given by

Σ̄ =
1

2
hη̄ − 1

2
hµχ̄µ +

1

2
(D+

µ Y
i)χ̄µγi − (D+

µX
µ)η̄

−i1
4
[Y i, Y j,Xµ]χ̄µγij − i

1

12
[Y i, Y j , Y k]η̄γijk . (3.8)

The Q-closed part is then

Lclosed = iǫµνλ

(

1

2
fabcdA+

µab∂νA
+
λcd −

1

3
f cdagf efb

gA
+
µabA

+
νcdA

+
λef

)

+ǫµνλTr

(

− 1

2
χ̄µD

+
ν χλ + hµD

+
ν Xλ + i

1

2
χ̄µ[γiχν ,Xλ, Y

i]

− i
1

3
h[Xµ,Xν ,Xλ] − iη̄[χµ,Xν ,Xλ] − i

2
D+

µ Y
i[Xν ,Xλ, Yi]

)

. (3.9)

Direct manipulation indeed shows that Lclosed is Q-closed up to total derivative terms, and

more interestingly about the Q-exact term,

{Qα, Σ̄β} = δα
β{Q,Σ}

= δα
βTr

[

1

2
D+

µ Y
iD+µYi −

1

2
h2 + hD+µXµ − 1

2
hµhµ − χ̄µD−

µ η + iη̄γi[Y i,Xµ, χ
µ]

+ i
1

4
η̄γij[Y

i, Y j , η] + i
1√
g
ǫµνλη̄[χµ,Xν ,Xλ] + i

1

4
χ̄µγij [Y

i, Y j , χµ]

+
1

12
[Y i, Y j , Y k][Yi, Yj , Yk] +

1

4
[Y i, Y j ,Xµ][Yi, Yj ,Xµ]

]

. (3.10)

In fact, utilizing the existing SO(5) symmetry of the action, one can rotate the constant

c-number spinor such that only one component is nontrivial e.g. v̄α = vδα1. In this case,

from (3.10) only the corresponding one component of Σ̄α, i.e. Σ̄1 couples to the supercharge

and contributes to the formation of the Q-exact part of the Lagrangian. In this way,

different choices of the linear combination of the four scalar supercharges (3.7) are all SO(5)

equivalent. At this point it is worthwhile to compare with a topological twisting of N = 4

super Yang-Mills theory [16, 17, 21] where there appears a pair of scalar supercharges.

In contrast to our case, the twisted action possesses no R-symmetry which would rotate

the two supercharges to each other. Hence, a different linear combination of the scalar

supercharges defines inequivalent cohomology.

The Q-closed part has the ghost number zero and contains no metric dependent term,

being explicitly topological, c.f. (2.22). On the other hand, the Q-exact part has no defi-

nite ghost number and contains explicitly metric dependent terms. In fact, all the metric

dependence of the off-shell supersymmetric Lagrangian (3.5) can be read off from Σ̄, be-

cause the Q-transformations (3.1) are independent of the base manifold metric. Thus,
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the energy-momentum tensor is Q-exact, and our off-shell supersymmetric formulation of

the Bagger-Lambert-Gustavsson action indeed defines a genuine topological field theory

in three dimensions. Note that since Σ̄ does not involve A−
µ , our Q-transformation rule -

which is defined over {Xµ, Y
i, h, hµ, η, χµ, A

+
µ } only - can be applied to it.

Fierz identities have been heavily used for the derivation of the above formulae. We

summarize them in the appendix.

4. Observables and partition function

4.1 Observables

As is well-known, a local operator that is Q-closed up to total derivatives leads to a series

of observables. For instance, we can have a relation:

[Q,O3] = dO2 , {Q,O2} = dO1 , [Q,O1] = dO0 , {Q,O0} = 0 . (4.1)

Here, On are n-forms with alternating statistics. The first relation holds by assumption,

and the rest follows from the nilpotency of Q. The integration of On over an n-cycle then

gives a well-defined observable.

One particular family of observables that comes free for any topological theory is the

one associated with the Q-closed part of the off-shell supersymmetric Lagrangian. For our

theory, we find

[Qα,Lclosed] = ∂µLαµ ,
[

Q(α,Lβ)µ
]

= ∂νLαβµν ,
[

Q(α,Lβγ)
µν

]

= 0 , (4.2)

where the brackets denote the symmetrization of the spinorial indices with weight one, i.e.

A(αBβ) = 1
2(AαBβ +AβBα) and

Lα
µ =−ǫµνλTr

(

i
1

4
[Y i, Y j, (γijχ

ν)α]Xλ+i
1

2
[Xν , Y i, (γiη)

α]Xλ+
1

2
ηαD+νXλ− 1

2
χανhλ

)

,

Lαβµν = ǫµνλTr

(

1

2
η(αχ

β)
λ + i

1

12
[Y i, Y j, Y k]Xλ(γijkC)αβ

)

. (4.3)

Wilson loop. Wilson loop operator is one of the most fundamental observables in any

non-Abelian gauge theory. Moreover, the Wilson loop in pure Chern-Simons theory [18]

has been used to compute knot invariants of three manifolds. So, it is natural to ask

whether we can have a sort of Wilson loop as an observable in our case too.

The simplest Wilson loop made of Ã+ is not a good observable since Ã+ is not Q-closed,
[

Qα, Ã+
µab

]

= i
(

−Xµcη
α
d + Yic(γ

iχµd)
α
)

f cd
ab .

It is tempting to modify Ã+ further to make it Q-closed, but it appears that it is not

possible to do so and there is no Wilson loop-like observable in the twisted Bagger-Lambert-

Gustavsson theory. The argument goes as follows. Consider Ã+
µab → Aµab = Ã+

µab +Bµab

with Bµab ≡ if cd
abXµcYids

i, where si is a constant vector of SO(5). Requiring closedness

of Aµab under vαQ
α, we find two conditions:

(a) sivα = vβ(γi)βα , (b) vα = sivβ(γi)βα .
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Condition (b) is not very strong; for a given vα, it is easy to choose an si satisfying it.

On the other hand, condition (a) is very strong. Using the SO(5) covariance, we can

always go to a basis in which, say, s1 = 0. Then, we have 0 = vβ(γ1)βα, which implies an

unacceptable condition vα = 0 because γ1 is invertible.

4.2 Partition function

Let us now consider the partition function in a quantum field theory in general:

Z =

∫

DΦ exp(−S) . (4.4)

In the usual semi-classical expansion, one proceeds in four steps: classical action, one loop

determinants, higher loop corrections and non-perturbative instanton corrections. How-

ever, in topological quantum field theory, one loop correction alone around all the BPS

configurations can lead to an exact result due to the localization.

The localization follows from the fact that the partition function (4.4) and the vev of

observables are invariant under the smooth deformation of the Lagrangian,

L = Lclosed + {Q,Σ} → Lt = Lclosed + t{Q,Σ} , (4.5)

with an arbitrary real parameter t. For large positive values of t, the path integral is

“localized” to field configurations with {Q,Σ} = 0. The expression for {Q,Σ} (3.10)

implies that the path integral localizes to

D+
µX

µ = 0 , hµ = 0 , D+
µ Y

i = 0 , [Y i, Y j, Y k] = 0 , [Y i, Y j ,Xλ] = 0 . (4.6)

A systematic study of the full partition function, including the integral over the BPS

configurations, is out of the scope of this work. Even at the classical level, we would have to

deal with the subtleties due to the imaginary value and gauge non-invariance of the Chern-

Simons term; see [25] for a recent discussion. Here, as a first step forward, we evaluate the

one loop determinants in the trivial background with vanishing vev for all fields.

When the three-algebra is equipped with a positive definite norm, the possible

dimension of the three-algebra is either one (trivial case), four or infinity. Either precisely

for the trivial dimension, or effectively for the evaluation of the one-loop determinants

in the nontrivial dimensions, we have copies of the following action for free fields (in the

form notation),

S =

∫

d3x
√
g

[

1

2
(X1,∆1X1) +

1

2
(Y i,∆0Yi) − (χ̄1, ∗dχ1) − (η̄,d†χ1)

]

, (4.7)

where ∆0 and ∆1 are Laplacians acting on zero and one forms respectively,

∆0Y
i = −∇µ∇µY

i , ∆1Xµ = −∇ν∇νXµ − [∇µ,∇ν ]Xν . (4.8)

Note also that
√
g (χ̄1, ∗dχ1) = χ̄1 ∧ dχ1. For the nontrivial three-algebra dimensions we

omitted the Chern-Simons term of the gauge field, since at one loop level the contribution

from the gauge field cancels out against those from the gauge-fixing ghosts.

– 13 –



J
H
E
P
1
1
(
2
0
0
8
)
0
1
4

In general, according to the Hodge theorem, any p-form, ψp, in a compact manifold

of the positive definite signature decomposes uniquely into the harmonic form, hp, exact

form, dαp−1, and coexact form, d†βp+1 = (−1)p+1 ∗ d ∗ βp+1,

ψp = hp + dαp−1 + d†βp+1 , (4.9)

where hp, αp−1 and βp+1 are all globally well defined. From the positive definiteness, we

also have dhp = 0, d†hp = 0. The Laplacian on p-form i.e. ∆p is given by6

∆p = d†d + dd† , (4.10)

so that each of d†d and dd† diagonalizes over the harmonic, exact and coexact p-form spaces.

In our case of the free action above (4.7), integrating out η field forces to set d†χ1 = 0,

and hence with χ1 = h1 + dα0 + d†β2, from the positive definiteness the partition function

saturates at

dα0 = 0 for χ1 , (4.11)

which can be regarded as a gauge fixing in BRST quantization.

When there are fermionic zero modes, the bare partition function vanishes. In our

case, there are one zero mode for η and b1 (the first Betti number) zero modes for χ1.

Assuming that the right number of zero modes are absorbed by products of fermions from

observables and/or interaction vertices, we find

Zone−loop :=

∫

DXDYDχ e−S =
Pf [C(∗d)1]

[det∆0]
5
2 [det∆1]

1
2

=
[det∆1]

3
2

[det∆0]
9
2

, (4.12)

where the second equality follows from 7 Pf =
√

det, C2 = −14×4, det(d†d)1 =

det∆1/det∆0. The final expression is nothing but the topological quantity known as the

Ray-Singer torsion in three-dimensions:

3
∏

p=0

[det∆p]
−(−1)p 1

2
p =

[det∆0]
3
2

[det∆1]
1
2

= Z − 1
3

one−loop . (4.13)

We close this section with a comparison with a similar computation in the Rozansky-

Witten theory [19]. The fermionic part of our free action (4.7) is essentially identical to that

of Rozansky-Witten theory. The bosonic part of Rozansky-Witten theory is a non-linear

sigma model with a hyper-Kähler target space, so it is quite different from our theory.

Nevertheless, the combination of the bosonic and fermionic contributions of Rozansky-

Witten theory also gives rise to the Ray-Singer torsion but with a different power from

ours, i.e. −1/2 versus −1/3.

6Explicitly we have for a p-form, ψ,

(dψ)a1a2···ap+1
= (p+ 1)∇[a1

ψa2a3···ap+1] , (d†
ψ)a1a2···ap−1

= −∇b
ψb a1a2···ap−1

,

(∆pψ)a1a2···ap
= −∇b∇bψa1a2···ap

+ p[∇b,∇[a1
]ψb

a2a3···ap] .

7In general for a p-form in d dimension, we have

det∆p = det∆d−p , det∆p = det(d†d)pdet(dd†)p , det(d†d)p = det(dd†)p+1 .

– 14 –



J
H
E
P
1
1
(
2
0
0
8
)
0
1
4

5. Relation to M5: partial topological twist of six-dimensional theory

If we introduce an auxiliary three manifold, an explicit realization of an infinite dimen-

sional three-algebra follows straightforwardly from the Nambu three-bracket defined on

the internal manifold. This suggests that Bagger-Lambert-Gustavsson theory with infinite

dimensional gauge group describes M5-brane as a condensation of multiple M2-branes [12 –

14]. In fact, by generalizing the Brink-Di Vecchia-Howe-Polyakov method, Nambu-Goto

action for a five-brane can be reformulated as a three-dimensional gauged nonlinear sigma

model having a Nambu three-bracket squared potential [13].

Introducing a functional basis for the three-manifold T a(y), we let all the variables

be functions on the whole six-dimensions e.g. Xµ(x, y) = Xµa(x)T
a(y). We represent the

three-algebra by

[X,Y,Z] ≡ 1√
ĝ
ǫλ̂µ̂ν̂∂

λ̂
X∂µ̂Y ∂ν̂Z ,

DµX ≡ ∂µX −Aµab[T
a, T b,X] , (5.1)

Tr ≡
∫

d3y
√

ĝ ,

where ĝ is an arbitrary function of x, y which can be identified as the determinant of the

internal space metric ĝµ̂ν̂(x, y). Then the whole six-dimensional space has the fiber bundle

structure: at each point in x-space (base), there exists a corresponding internal y-space

(fiber).

Now we recall the BPS equation:

D+
µX

µ = i
1

3
√
g
ǫµνλ[Xµ,Xν ,Xλ] . (5.2)

Provided the above Nambu-bracket realization of the three-algebra, this BPS equation

reads

D+
µX

µ = i
1

3
√
g
√
ĝ
ǫµνλe

µ̂ν̂λ̂∂µ̂X
µ∂ν̂X

ν∂
λ̂
Xλ = i

2√
ĝ

√

det(∂µ̂Xλ∂ν̂Xλ) , (5.3)

where the last equality holds since ∂µ̂X
µ is a 3 × 3 matrix. We integrate this formula

over y-space or take the trace. The final expression then leads to the usual Gauss law in

three-dimension:

∇ ·E(x) = iρ(x) , (5.4)

with

Eµ =
1

2

∫

d3y
√

ĝ Xµ ,

ρ =
1

6
√
g
ǫµνλ

∫

d3y ∂µ̂

(

eµ̂ν̂λ̂Xµ∂ν̂X
ν∂

λ̂
Xλ
)

=

∫

d3y
√

det(∂µ̂Xλ∂ν̂Xλ) . (5.5)

Remarkably, the density ρ(x) matches with the Nambu-Goto action having the y-space

and the “Xµ-space” as the world-volume and the target space. Reflecting upon the
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original untwisted BLG description of multiple M2-branes, Xµ corresponds to three

transverse scalars and xµ can be identified as three longitudinal physical directions in the

static gauge. In our twisted theory with three-algebra realized by Nambu-bracket, it is

then natural to regard the (x, y)-space and the (x,X)-space as the world-volume and the

physical longitudinal space of an Euclidean M5-brane respectively with the partial static

gauge “x = x”. This M5-brane picture then reveals that any point-like BPS configuration

in x-space or instanton may expand over X-space and in fact it corresponds to a Euclidean

M2-brane. The x-space charge density ρ(x) then measures the volume of a Euclidean

M2-brane in the X-space. Furthermore, ρ being a surface integral, if the y-space is

compact, up to a x-space local factor, the density ρ(x) counts the winding number of

M2-branes wrapping three-cycles inside M5-brane. For a non-compact y-space, with a

suitable boundary condition, the integral may not vanish too.

Since the Q-transformations involve the three-commutators and depend on the y-space

metric, our twisted Bagger-Lambert-Gustavsson theory is topological only over the x-space

but not over the y-space.

Furthermore with a six-dimensional metric:

ds26 = gµνdxµdxν + ĝµ̂ν̂dxµ̂dxν̂ , (5.6)

if we define a “(2, 0)” and a “(0, 2)” two-form, respectively:

Bµν :=
1√
g
ǫµνλX

λ , Bµ̂ν̂ :=
1

3
√
g
ǫµνλ (∂µ̂X

µ∂ν̂X
ν − ∂ν̂X

µ∂µ̂X
ν)Xλ , (5.7)

then in terms of their three-form field strengths,

Hλµν := D+
λ Bµν +D+

µBνλ +D+
ν Bλµ =

1√
g
ǫλµνD

+
ρ X

ρ ,

H
λ̂µ̂ν̂

:= ∇
λ̂
Bµ̂ν̂ + ∇µ̂Bν̂λ̂

+ ∇ν̂Bλ̂µ̂
=

1

3
√
ĝ
√
g
ǫ
λ̂µ̂ν̂

ǫλµν [Xλ,Xµ,Xν ] , (5.8)

the BPS equation (5.2) can be written in a compact form:

Hλµν = i (∗H)λµν . (5.9)

This corresponds to a partial self-duality equation of a three-form in Euclidean six dimen-

sion. It is partial, since it is the self-duality linking (3, 0) and (0, 3) field strength and the

other one linking (2, 1) and (1, 2) is missing.8

Provided these dictionaries (despite of the incompleteness of the self-duality), the BPS

equation (5.2) or (5.4) indeed realizes the coupling of the self-dual three-form to the M2-

brane charge density.

8It seems hard to find the (1, 1) two-form Bµµ̂ which would complete the missing piece. One possible

reason might be that the scalar supercharges are not SO(6) chiral in contrast to the supersymmetries of

the six-dimensional M5-brane world-volume theory [26, 27].
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6. Outlook

We have constructed a topological version of the BLG theory and took some preliminary

steps to study its physical contents. But, clearly, more work would be required to reveal

the full physical contents of the topological theory. First, an exhaustive list of observables

should be found. Second, a systematic study of the BPS configurations and their contri-

bution to the path integral should be done. Finally, a perturbative computation of the

partition function and some of the observables should be carried out. We hope to address

these issues in a future work.

Another obvious direction is to consider other related theories. In three dimensions,

the minimum amount of supersymmetry needed to obtain a topological theory by twisting

is N = 4 i.e. eight supersymmetries. An SO(3) subgroup of the SO(N ) R-symmetry should

be combined with the “Lorentz” SO(3) to yield a nilpotent, scalar supercharge Q of the

twisted theory. But, for N = 3, since the supercharge is a doublet of Lorentz SO(3) and a

triplet of the R-symmetry SO(3), the twisting cannot give rise to a scalar supercharge.

Recently, inspired by the BLG theory, a large class of N ≥ 4 Chern-Simons theories

(with ordinary Lie algebra gauge symmetry) has been constructed [28, 29] and their relation

to string/M-theory has been elucidated. It would be interesting to consider twisting those

theories. As they include both Chern-Simons terms as well as non-linear sigma model

with hyperKähler target space, they may reveal interesting connection between the pure

Chern-Simons theory [18] and the Rozansky-Witten theory [19].
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A. Some useful relations

In curved backgrounds, the covariant derivative satisfies

[Dµ,Dν ]Xν − F̃µνX
ν +RµνX

ν = 0 , (A.1)

and hence

Tr(DµXν ,D
µXν)=

1

2
Tr(DµXν −DνXµ,D

µXν −DνXµ) + Tr(DµX
µ,DµX

µ)

+Xµ
a

(

F̃µν
abXν

b −RµνX
νa
)

+∂µTr(Xν ,DνX
µ)−∂µTr(Xµ,DνX

ν).(A.2)
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With this and the decomposition of the bosonic fields (2.20), up to total derivatives, we

can rewrite a bosonic part of the Bagger-Lambert-Gustavsson action for the twist:

1

2
Tr
(

DµXI ,D
µXI

)

+
1

12
Tr
(

[XI ,XJ ,XK ], [XI ,XJ ,XK ]
)

≡ 1

4
Tr(DµXν −DνXµ , D

µXν −DνXµ) +
1

2
Tr(Xµ, [Dµ,Dν ]Xν)

+
1

2
Tr
(

DµX
µ + i[X1,X2,X3] , DµX

µ − i[X1,X2,X3]
)

+
1

2
Tr

(

DλY
i + i

1

2
ǫλµν [X

µ,Xν , Y i],DλYi − i
1

2
ǫλρσ[Xρ,Xσ, Yi]

)

+
1

12
Tr
(

[Y i, Y j, Y k], [Yi, Yj , Yk]
)

+
1

4
Tr
(

[Y i, Y j,Xµ], [Yi, Yj,Xµ]
)

. (A.3)

Regarding the five-dimensional gamma matrices (2.14), two crucial Fierz identities

follow from the completeness relations of 4 × 4 symmetric and anti-symmetric matrices:

4δα
γδβ

δ + 4δβ
γδα

δ + (Cγij)αβ(γijC
−1)γδ = 0 ,

2δα
γδβ

δ − 2δβ
γδα

δ + CαβC
−1γδ + (Cγi)αβ(γiC

−1)γδ = 0 . (A.4)

These further lead to other useful identities:

(γi)αβ(γi)
γ
δ = 2δγ

βδ
α
δ − δα

βδ
γ
δ − 2C−1αγCβδ , (A.5)

(γi)αβ(γji)
γ
δ = 2δα

δ(γj)
γ
β − δα

β(γj)
γ
δ − (γj)

α
β δ

γ
δ − 2(γjC

−1)αγCβδ ,

(γi)αβ(γijk)
γ
δ = 2δγ

β(γjk)
α
δ − δα

β(γjk)
γ
δ − 2C−1αγ(Cγjk)βδ − (γj)

α
β(γk)γδ + (γk)

α
β(γj)

γ
δ ,

δβ
γ(γij)

α
δ + δα

γ(γij)
β

δ − (γij)
β

γδ
α

δ − (γij)
α

γδ
β

δ + 2Cγδ(γijC
−1)αβ (A.6)

+(γj)
β

γ(γi)
α

δ − (γi)
β

γ(γj)
α

δ + (γj)
α

γ(γi)
β

δ − (γi)
α

γ(γj)
β

δ = 0 ,

−δα
β(γj)

γ
δ − (γj)

α
βδ

γ
δ − (γjC

−1)αγCβδ − (C−1)αγ(Cγj)βδ + δγ
β(γj)

α
δ + (γj)

γ
βδ

α
δ = 0 .
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